Planet formation is a multi-scale process in which the coagulation of $\mathrm{\mu m}$-sized dust grains in protoplanetary disks is strongly influenced by the hydrodynamic processes on scales of astronomical units ($\approx 1.5\times 10^8 \,\mathrm{km}$). Studies are therefore dependent on subgrid models to emulate the micro physics of dust coagulation on top of a large scale hydrodynamic simulation. Numerical simulations which include the relevant physical effects are complex and computationally expensive. Here, we present a fast and accurate learned effective model for dust coagulation, trained on data from high resolution numerical coagulation simulations. Our model captures details of the dust coagulation process that were so far not tractable with other dust coagulation prescriptions with similar computational efficiency.
translated by 谷歌翻译
基于事件的视觉传感器在事件流中编码本地像素方面的亮度变化,而不是图像帧,并且除了低延迟,高动态范围和缺乏运动模糊之外,还产生稀疏,节能编码。基于事件的传感器的对象识别的最新进展来自深度神经网络的转换,培训背部经历。但是,使用这些事件流的方法需要转换到同步范式,这不仅失去了计算效率,而且还会错过提取时空特征的机会。在本文中,我们提出了一种用于基于事件的模式识别和对象检测的深度神经网络的端到端培训的混合架构,将尖刺神经网络(SNN)骨干组合用于高效的基于事件的特征提取,以及随后的模拟神经网络(ANN)头解决同步分类和检测任务。这是通过将标准的梯度训练与替代梯度训练相结合来实现这一点来实现,以通过SNN传播梯度。可以在不转换的情况下培训混合SNN-ANN,并且导致高度准确的网络,这些网络比其ANN对应物大得多。我们演示了基于事件的分类和对象检测数据集的结果,其中只需要将ANN头的体系结构适应任务,并且不需要基于事件的输入的转换。由于ANNS和SNNS需要不同的硬件范式来最大限度地提高其效率,因此设想SNN骨干网和ANN头可以在不同的处理单元上执行,从而分析在两部分之间进行通信的必要带宽。混合网络是有前途的架构,以进一步推进基于事件的愿景的机器学习方法,而不必妥协效率。
translated by 谷歌翻译
海洋生态系统模型的参数识别对于对船舶生态系统模型的评估和验证对观察数据进行评估和验证。基于代理的优化(SBO)是一种计算复杂模型的计算有效方法。 SBO通过从不太准确但计算性更便宜(低保真)模型的代理代替计算昂贵的(高保真)模型,与适当的校正方法组合,这提高了低保真模型的准确性。为了构建计算廉价的低保真模型,我们测试了三种不同的方法来计算海洋生态系统模型的年度周期性解决方案(即稳定年度周期)的近似:首先,减少旋转迭代次数(几个几十年而不是千年),其次,一个人工神经网络(ANN)近似稳定年度周期,最后是两种方法的组合。除了仅使用ANN的低保真模型外,SBO会产生靠近目标的解决方案,并显着降低了计算工作。如果ANN近似于适当的海洋生态系统模型,则使用该ANN的SBO作为低保真模型,提供了验证的有希望和计算有效的方法。
translated by 谷歌翻译
修剪神经网络可降低推理时间和记忆成本。在标准硬件上,如果修剪诸如特征地图之类的粗粒结构(例如特征地图),这些好处将特别突出。我们为二阶结构修剪(SOSP)设计了两种新型的基于显着性的方法,其中包括所有结构和层之间的相关性。我们的主要方法SOSP-H采用了创新的二阶近似,可以通过快速的Hessian-vector产品进行显着评估。 SOSP-H因此,尽管考虑到了完整的Hessian,但仍像一阶方法一样缩放。我们通过将SOSP-H与使用公认的Hessian近似值以及许多最先进方法进行比较来验证SOSP-H。尽管SOSP-H在准确性方面的表现或更好,但在可伸缩性和效率方面具有明显的优势。这使我们能够将SOSP-H扩展到大规模视觉任务,即使它捕获了网络所有层的相关性。为了强调我们修剪方法的全球性质,我们不仅通过删除预验证网络的结构,而且还通过检测建筑瓶颈来评估它们的性能。我们表明,我们的算法允许系统地揭示建筑瓶颈,然后将其删除以进一步提高网络的准确性。
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
Edge computing is changing the face of many industries and services. Common edge computing models offload computing which is prone to security risks and privacy violation. However, advances in deep learning enabled Internet of Things (IoTs) to take decisions and run cognitive tasks locally. This research introduces a decentralized-control edge model where most computation and decisions are moved to the IoT level. The model aims at decreasing communication to the edge which in return enhances efficiency and decreases latency. The model also avoids data transfer which raises security and privacy risks. To examine the model, we developed SAFEMYRIDES, a scene-aware ridesharing monitoring system where smart phones are detecting violations at the runtime. Current real-time monitoring systems are costly and require continuous network connectivity. The system uses optimized deep learning that run locally on IoTs to detect violations in ridesharing and record violation incidences. The system would enhance safety and security in ridesharing without violating privacy.
translated by 谷歌翻译
Cognitive Computing (COC) aims to build highly cognitive machines with low computational resources that respond in real-time. However, scholarly literature shows varying research areas and various interpretations of COC. This calls for a cohesive architecture that delineates the nature of COC. We argue that if Herbert Simon considered the design science is the science of artificial, cognitive systems are the products of cognitive science or 'the newest science of the artificial'. Therefore, building a conceptual basis for COC is an essential step into prospective cognitive computing-based systems. This paper proposes an architecture of COC through analyzing the literature on COC using a myriad of statistical analysis methods. Then, we compare the statistical analysis results with previous qualitative analysis results to confirm our findings. The study also comprehensively surveys the recent research on COC to identify the state of the art and connect the advances in varied research disciplines in COC. The study found that there are three underlaying computing paradigms, Von-Neuman, Neuromorphic Engineering and Quantum Computing, that comprehensively complement the structure of cognitive computation. The research discuss possible applications and open research directions under the COC umbrella.
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
The application of deep learning algorithms to financial data is difficult due to heavy non-stationarities which can lead to over-fitted models that underperform under regime changes. Using the Numerai tournament data set as a motivating example, we propose a machine learning pipeline for trading market-neutral stock portfolios based on tabular data which is robust under changes in market conditions. We evaluate various machine-learning models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks with and without simple feature engineering, as the building blocks for the pipeline. We find that GBDT models with dropout display high performance, robustness and generalisability with relatively low complexity and reduced computational cost. We then show that online learning techniques can be used in post-prediction processing to enhance the results. In particular, dynamic feature neutralisation, an efficient procedure that requires no retraining of models and can be applied post-prediction to any machine learning model, improves robustness by reducing drawdown in volatile market conditions. Furthermore, we demonstrate that the creation of model ensembles through dynamic model selection based on recent model performance leads to improved performance over baseline by improving the Sharpe and Calmar ratios. We also evaluate the robustness of our pipeline across different data splits and random seeds with good reproducibility of results.
translated by 谷歌翻译
In this work, we address the problem of unsupervised moving object segmentation (MOS) in 4D LiDAR data recorded from a stationary sensor, where no ground truth annotations are involved. Deep learning-based state-of-the-art methods for LiDAR MOS strongly depend on annotated ground truth data, which is expensive to obtain and scarce in existence. To close this gap in the stationary setting, we propose a novel 4D LiDAR representation based on multivariate time series that relaxes the problem of unsupervised MOS to a time series clustering problem. More specifically, we propose modeling the change in occupancy of a voxel by a multivariate occupancy time series (MOTS), which captures spatio-temporal occupancy changes on the voxel level and its surrounding neighborhood. To perform unsupervised MOS, we train a neural network in a self-supervised manner to encode MOTS into voxel-level feature representations, which can be partitioned by a clustering algorithm into moving or stationary. Experiments on stationary scenes from the Raw KITTI dataset show that our fully unsupervised approach achieves performance that is comparable to that of supervised state-of-the-art approaches.
translated by 谷歌翻译